← К соревнованиям

Индивидуальная олимпиада по информатике и программированию

Раскладывание приборов

Сложность: 31%

Олимпиада закончилась, и, пока жюри подводит итоги, участники решили сходить в ближайший ресторан.

Из-за эпидемиологических ограничений, в ресторане есть только один круглый стол на nn мест и ровно два официанта. Места за столом пронумерованы натуральными числами от 11 до nn, в порядке обхода по часовой стрелке. Таким образом, соседними являются места ii и i+1i + 1 для всех 1i<n1 \le i < n, а также места nn и 11.

Управляющий рестораном, увидев, что к ним пришло так много посетителей, поручил официантам разложить перед каждым местом столовые приборы. Изначально приборов нет нигде, первый официант стоит около места номер aa, а второй около места номер bb. За секунду официант может перейти от одного места к соседнему слева или справа. У каждого официанта есть тележка с бесконечным количеством приборов, и, если он стоит около места, на котором еще нет приборов, он их мгновенно выкладывает на это место.

Пока участники ждут, им стало интересно, какое минимальное количество секунд необходимо официантам, чтобы разложить перед каждым местом столовые приборы. Помогите им найти ответ на этот вопрос.

Входные данные

В первой строке ввода дано ровно одно целое число nn – количество мест за круглым столом (1n10181 \le n \le 10^{18}).

Во второй строке через пробел записаны два целых числа aa и bb – номера мест, рядом с которыми изначально находятся первый и второй официанты (1a,bn1 \le a, b \le n).

Выходные данные

Выведите единственное целое число – минимальное количество секунд, которое необходимо официантам, чтобы разложить перед каждым местом столовые приборы.

Подзадачи

баллынеобх. подзадачиограничения
1

9

-

n10n \le 10

2

14

-

Места aa и bb совпадают или являются соседними

3

17

1

n1000n \le 1\,000

4

31

1, 3

n100000n \le 100\,000

5

29

1, 2, 3, 4

Нет дополнительных ограничений

STDINSTDOUT
5
1 3
2
7
3 1
3

Примечание

Один из способов разложить приборы в первом примере:

  • Маршрут первого официанта: 1231 \rightarrow 2 \rightarrow 3.

  • Маршрут второго официанта: 3453 \rightarrow 4 \rightarrow 5.

Один из способов разложить приборы во втором примере:

  • Маршрут первого официанта: 34563 \rightarrow 4 \rightarrow 5 \rightarrow 6.

  • Маршрут второго официанта: 12171 \rightarrow 2 \rightarrow 1 \rightarrow 7.